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We will write down some analogs of the “global” (or Selberg) trace for-
mula and the “global” trace formula of Arthur in the case of finite groups.
We shall only assume a basic familiarity with groups and representations.
For the sake of drawing an analogy, we shall often write sums as integrals.

Notation: Let GG be a finite group, G, the set of conjugacy classes, G* the
set of equivalence classes of irreducible complex representations. We denote
a conjugacy class in G by

(vy={9"v9|geG}, ~veG.

*Notes written summer 1996 visiting Stanford Univ.. Some details added June, Novem-
ber 1997, August 2000, March 2003




We often identify G, (resp., G* ) with a complete set of representatives of
these classes. Let C'(X) denote the vector space of complex-valued functions
on a finite set X. Let dz denote the counting measure on G.

The vector space C(G,) is called the space of class functions on G.

1 Orbital integrals and characters

We can construct a class function from any function f € C(G) by summing
over all the conjugate elements: Define the orbital integral by

0 : CG) = C(G.),
O(f,7) = / fla"'yz)dz, 7 €G.

Here dg denotes the counting measure. For 7 € G*, let tr 7 € C(G,) denote

the trace (or character) of 7. The following two lemmas are well-known
(due to Frobenius or Schur):

Lemma 1. C(G,) = span{tr 7 | # € G*} and dim C(G,) = |G| = |G*|.

In other words, the characters form a basis for the vector space of class
functions.

This lemma will be referred to as the completeness lemma.

Lemma 2. For m, 7' € G*, we have

1 — 1, wnm=2q7a,
@Ztrﬂ(g)-t”(g)Z{ 0.

otherwise.

This lemma will be referred to as orthogonality of characters.

Corollary 3. For all m € G*, we have

1 1, w1,
@Ztrw(g) o { 0, otherwise, (1)

geG ’



For fl: f2 € C(G), let

(f1,fo) = Zﬁ

gEG

We call this the Schur inner product on C(G). Note that the collection

of functions ;
_J 1, =y,

for z € G, form a basis for the vector space C(G) which is orthonormal with
respect to the Schur inner product. The above lemma says that the collection
of irreducible characters form an orthonomal basis as well.

Example 4. Let G = 53, the symmetric group on & letters. Let o =
(12), 7=(123), so
G ={l,0,7,7% 07,07%}.

Using the fact that oro™! = 72, it can be shown that G has only 3 distinct

conjugacy classes:
G = {1}, {o}.{7}}.
In fact,
{1} =1, [o}/=3, K} =2

There are three inequivalent irreducible complex representations of G:

m : g+ identity map on C(trivial rep)

my : g+ (2 +—> sgn(g) - z) on C(sign rep)

w3 @ g+ associated 3 x 3 permutation matrix (standard rep)
acting on C*/{(z,y,2) | z +y+ 2 =0}.

Their values on the conjugacy classes are summarized as follows:

traN\{y} | 1 | 8 | 2
trm\{v} | {1} | {o} | {7}

tr m 1 1 1
tr my 1 -1 1
tr T3 2 0 -1

We shall explain why the columns of this table are orthogonal in the next
section.



Example 5. The group As of even permutations on {1,2,3,4,5} has 5 con-
jugacy classes:

{1}’ {U, = (17 2)(3’ 4)}, {b = (1’ 2, 3)}:
{CZ (1,2,3,4, 5)}, {dZ (1,3,5,2,4)}.

There are 5 ireducible characters. Their values on the conjugacy classes are
summarized as follows:

tra\|{~v} | 1 | 15 | 20| 12 | 12

trm\{~} | {1} | {a} | {6} | {c} | {d}
tr m 1 1 1 1 1
tr my 3| -1 0| ¢ | o
tr 3| -1 0| ¢ | o
tr my 4 0 1 -1 -1
tr ms ) 1 -1 0 0

Here ¢ = (14 +/5)/2 and ¢ = (1 —/5)/2.
We close this section with a

Remark 1. One may show (without using the completeness lemma) that the
orbital integral map O : C(G) — C(G,) is surjective and that

ker O =span{f — f?| f € C(G), g€ G},

where f9(x) = f(g 'zg), for x,q9 € G. The is equivalent to saying that the
sequence

0 I(G) 5 C(G) S C(G,) — 0,
is exact, where I(G) = C(G)¢ ' ={f'—f | f € C(G), g € G} and i is

inclusion.

Since these three groups I(G), C(G) and C(G.) are all G-module (un-
der the action induced by conjugation), one may ask what their cohomology
groups are. Since the action of G on C(G.) is trivial and since C(G,) is
a finite dimensional complex vector space, we know that H'(G,C(G,)) =
Hom(G,C(G,)) = 0. What are the other cohomology groups?



2 A Fourier expansion

Let
/ fom@dg =" f(g
geG

and

trw (f) = /Gtrﬁ(g)f(g) dg = Ztrﬁ(g)f(g)

g9€G

By completeness, each orbital integral may be written as a linear combination
of characters. Indeed, we have the following expansion.

Lemma 6. For f € C(G) and v € G, we have

Z trm (f) - tro (7). (2)

neG*

proof: By the completeness lemma, there are constants a,(f) € C such

that
O(f,) =Y an(f) - trm(y).

TeG*

Using the orthogonality of characters, we have

G- an(f) = / (S an(f) - tra'(z))irm () do

' eG*

_ /GO(f, ) n(@) dz

_ / / Flg teg)irm (@) dgdz
//f ytr7 (g—1zg) dgdx

= |G|tr7 (f

O
For example, let v/ € G and let f denote the characteristic function of
the set {7'}. Then trn(f) = trw(y'), In this case,

Ztr?(f)-trw Ztrﬁ tr(7y).

TeEG* TeG*



By the lemma above, this is = 0 if vy is not conjugate to 4 (and is non-zero if
v € {7'}). This is equivalent to saying that distinct columns of the character
table of a finite group are orthogonal.

3 An analog of the global trace formula

Let I' be a subgroup of G and let G, denote the centralizer of v in G"
Gy={9€G|g7=1g}
Let
C\G) ={¢:G = C| ¢(hg) = ¢(g), Vh €T, Vg € G}.
Note that G acts on C(I'\G) by right translation:

(R(9)¢)(z) = d(zg ™), =z,9€G.

(To check this we must verify that, for each ¢ € C(I'\G), we have (a) R(1)¢ =
¢, which is obvious, and (b) R(g1)R(g2)¢ = R(g192)¢, which follows from the
equation

(R(g91)R(g2)9) () = (R(91)¢g,) (2) = ¢, (91 )
= ¢(zg; '97") = d(x(9192) ") = (R(9192)9)(2), =,91,92 € G,

where ¢,(z) = ¢(zy~1).) In other words, each g € G gives rise to an auto-
morphism

R(g): C(\G) — C(I\G).

This is called the right regular representation of G on C(I'\G). For
each fixed f € C(G), define

R(f): C(T\G) — C(I'\G)

by
(R()9)(x) = /G f@W)(RW)$)(x) dy, z€G.



This is called the right regular representation of C'(G) on C(I'\G). We

may rewrite this as
- [ 10Ewe)@) dy

- / f(y)cb(xy 1

[ [ wethy™) an dy

/foy ) dy,

where

Ky(x,y) = meals(F) /F Sy 'ha) dh

and where meas(I') = [.1 dh is the measure of . The function K :
G x G — C is called the kernel function of the right regular representation
of G on C(I'\G).

Choose the measure dh as the counting measure, so that meas(I') = |T'|.
Another way to write this is

1(z,y) mey z).

vyl
Lemma 7. tr(R(f)) = % > gec Kz, ).

proof: The delta functions {6, | z € I'\G}, form an orthonormal basis
for C(I'\G) with respect to the inner product

(fur f2) = 'F‘ DI

:cEI‘\G

These elements may be used to compute a matrix representation of R(f).



The trace is therefore given by

mmm=2mmam-q S (R()S,) ()5, (2)

ger\G g€T\G z€l\G

m§jz§y (2)d,()

gEF\G gel\G yeG

'F'z S ST F W),y )5, ()

gEI‘\G zeT\G yeG

—G XX X e

gEF\G z€l'\G yeg~ Tz

— i X S rtahe) = 1 X5 Flatha),

gEF\G yel geG yel
as desired. O

Lemma 8. If
R =@ co m£7r

then

(a) tr(R(f)) = Y req- matr(n(f)), for all f € C(G),
(b) mL # 0 if and only if the restriction of w to T, resS(w), contains the
trivial representation of I'.

proof: We only prove (b). Let p € G* and f = tr(p). By (a) and
orthogonality, tr(R(tr(p))) = m,. By the previous lemma, we have

tr(R( S o) g he) = () ()
[

If
Rest(p) = @oer-no0

Ztr ‘F|7’L1,

hel

then, by orthogonality,

where n; denotes the multiplicity of the trivial representation of I in res&(p).
U



Lemma 9. [, K¢(z,z)ds = \1“\ > vere |G/Gy|O(f,7), where G, is the cen-
tralizer of v and where

={{g 'hg | g€ G} | heT}

15 the set of G-conjugacy classes in I'.

This will be called the “geometric side” of the “global” trace formula for
finite groups. It is the trace of the operator R(f) in (3).

proof: Since
G/Gy— {7}
9Gy — g9,

is a bijection, we have

/(;Kf(x,x)dx:%Z/f(x_lyx)d:c
| GPORIWACEEE

¥eré o' €{~}

|r| > {0, )
~erEG

|F| > 1G/G,O(f,7).
~€ETE

O
On the other hand, substituting the Fourier expansion (2) into the result
of the above lemma, we obtain

/GKf(x,x dzr = |I‘\ Z |G/G,| Ztrw tr(y)

y€ETG TEG*

|F| Z trw(f Z {7y} trm(y
TEG* ~€ere

|I‘\ Z trw(f )Ztrw(g)
TeG* ger

This will be called the “spectral side”.
Setting the geometric side equal to the spectral side gives the

9



Theorem 10. (“global” trace formula for finite groups) If R is the right
regular representation of C(G) on C(G/T') then

R — GBT(EG* miﬂ-
then, for all f € C(G), we have

Sl (f) = 3 (G, 10(f,7) = ﬁ S ww(f) St (h).

TeEGH yeTG TeG* hel

3.1 Special cases of the “global” trace formula

The following result may be regarded as an analog of the Plancherel theorem.

Corollary 11. Let I' =1 and let f € C(G) be arbitrary. Then
1 . _
f1)= €] Z (dim 7)tr7(f).
TEG*

Example 12. Assume that T is a subgroup of G. If m is an irreducible
representation induced from ', say m = ind%o with o # 1, then the Frobenius
formula states that

trm(g) = Z tro(z tgr).

r€G,x~1gxel

Ztrﬂ(g) = Z Z tro(z ' gr).

ger g€l zeG,x—1gzel

This imples

Orthogonality (1) implies

Z tro(z”'gz) =0,

g€er

since x'T'x = T". Therefore, such induced representations do not contribute
to the “trace formula” above.

Consider the case I' = G of the above theorem. Since tr1(f) = [, f(g) dg,
the orthogonality of characters implies the following result.

10



Corollary 13. (a) [ f(9)dg =3 cq. |G, 1O(f,7), for f € C(G).

) [, flg)dg =3, mEtrT(f).

We call (a) the Weyl integration formula for (the finite group) G.
(This formula has an easier proof than the one above: as an exercise the
reader may try to prove it using the decomposition G = |J ., {7}). Part
(b) is another form of the Plancherel theorem.

We next consider the case where I' is a subgroup of G of index 2 in the
above theorem. In this case, I' is automatically a normal subgroup of G.
There is a theorem of Clifford which tells us precisely which representations
in G* are induced from I'.

Lemma 14. (Clifford) Let m € G*. Fiz any s € G—T, where T is a subgroup
of G of index 2. FEither

(a) the restriction of 7 is irreducible, in which case 7 is not induced from
a representation of I' but m is an irreducible constituent of a representation
ind%c, for some o € T* which satisfies 0 = o° and the restriction of © to T
18 O,

or

(b) the restriction of 7 is reducible, say m = 0 ® o' (some o,0" € T*) in
which case o' = o, o' is inequivalent to o, and

7= indSo = indSo’.

By orthogonality, the sum . tr w(g) vanishes if the restriction of 7 to I
is irreducible and non-trivial. But by the remark above, the sum . tr7(g)
vanishes if 7 is induced irreducibly from I'. By Cliffords’ lemma, one of these
cases must hold, so we have the following result.

Lemma 15. Assume I is a subgroup of G of index 2. For dll f € C(G), we

have
1

Y IG/GO(f, ) == Y. t7(f).

~eTE |F| TEG* =1

4 Analog of the local trace formula for finite
groups
We try to compute

/G /G fi(5™ ) foly) dady

11



in two ways.
Let

h(g):/Gfl(l‘_lgx)fz(g) dz.

The Weyl integration formula gives

/G /G fu(ag2) folg) dadg = / h(g) dg
= 316, 0(h, )

0lS G

= Z |G'y|_10(f1; V)O(fZa fY)

YE G

This will be called the “geometric side”.
The Fourier expansion (2) gives

/G/Gfl(x—lgx)f2(9)dmdg:/Go(fl,y)ﬁ(y) dy
= Y um(fi)tra(fs).

TEG*

This will be called the “spectral side”.
Setting the geometric side equal to the spectral side gives the

Theorem 16. (“local” trace formula for finite groups) For fi, fo € C(G),

we have
Z trw(fr)tro(fo) = Z |G7\_1O(f1,’)’)0(f2a’)’)-

TEGH ’)’EG*

4.1 Special cases of the local trace formula

Setting f; = fo gives the following curious identity:

Corollary 17. For f € C(G) real-valued, we have

Y jrw(f)P =) GO )

TEG* ’YEG*

12



Example 18. If G = A5 and [ is the characteristic function of the conjugacy
class {(1,2,3)} C As then ' Y s [trw(f)|* = 400 + 400 + 400 = 1200 and
> e |Gyl TTO(f,7)? = 1200, as expected.

Next, we write the local trace formula for finite groups down more explic-

itly. First, some notation. If we let » = |G| = |G*| then we can let
G* = {71, "'577"}’
G* = {71'1, ...,71'7«},
Gi:G%, 1§i§7‘,

fy= |G|71ch7, v € G,,

where chx denotes the characteristic function of a finite set X C G. Finally,
let
am = trme(fy,), 1<Lm<r.

(These a;; are equal to |G;| ' times the %" entry in the character table for
G.) Then O(v,, f;) = d;j, where 6;; is the Kronecker delta function,

5 = L, 1=y,
Y10, i#7,
and where a;; = |G| tr mi(7;)-

Let A = (aij)1<ij<r = (@1, ..., @), where @y is the k — th column vector of
the matrix A. If we put f; = f,, and f, = f,, then the trace formula in this
case says

(@, d;) = |Gi| 1o,  1<i,5<m,
where (U, W) = ). v;w; is the usual Hermitian inner product on C". In other
words, the trace formula in this case says

A"A = diag(|Gi[ 7, ..., |G, 7),
where A* = A is the conjugate transpose.

Example 19. Let G = S5 and let

n=1 m=02), w=(1223).

! This computation was performed with the aid of GAP, a group theory software pack-
age. For more details, see [J].

13



and we label w1, my, and w3 as before. We have

a11 Q12 Q13 1/6 1/2 1/3 1 1 3 2
A= ag91 Q92 Q93 = ]_/6 —1/2 1/3 = 6 1 -3 2
31 Q32 Q33 ]./3 0 —1/3 2 0 -2

and
‘Gl‘ = 6, ‘GQ‘ = 2, |G3| == 3

It is easy to check that
A- A" =diag(67',271,371),

as predicted by the trace formula. (However, A is not normal and A*A is not
diagonal.)

Exercise 20. Compute explicitly both sides of the equation in corollary 17
in case G = S3 and f = a1 f,, + asfy, + asf,,, where a1, a0, a3 are arbitrary
real coefficients.
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